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The perfect gas law $/kT=n=Zini (where ni is in molecules per cms) is inadequate for describing 
real gases because of the interactions during collisions. By a simple intuitive argument, these interactions can 
be taken into account exactly if you know the coEion lifetimes. The product of collision rate and lifetime 
gives the concentration of transient collision Complexes, which must be considered in the perfect gas law 
along with the stable species. As a result, the complete virial expansion is obtained, in hoth qrlentd and 
classiral mechanics. The zrg~imiit leads further to a new form for the partition function which includes the 
continuum as well as bound states. From this all the thermodynamic functions can be obtained. 

A. EQUATION OF STATE 

HE equation of state of real gases involves devia- 
tions from the perfect-gas law, 

p/kT=n= x n i ,  (1) 

T 
i 

where n is measured in molecules per cm3 and the n i  

refer to different species in the gas. The deviations 
caused by the formation of bound molecules from the 
parent gas can be handled by introducing the proper 
equilibria, and the various excited states of the parent 
species in the gas can be taken into account similarly. 
Each of the excited states can then be given a separate 
concentration nc in the sum in Eq. (1). 

Another class of interactions which also contribute 
to deviations from the perfect gas law are the inter- 
actions between two or more unbound molecules of 
the gas-these include the repulsive interactions that 
in the simplest case appear as the excluded volume in 
the van der Waals equation of state, and the attractive 
interactions that may result in the formation of 
metastable clusters ranging from a transient orbiting 
pair to the long-lived but unstable molecules that 
participate in unimolecular reaction processes. The 
efieiis of these interactions appear in the virial expan- 
sion of the gas law, and various devices have been used 
to compute the virial coefficients. In  this note I try to 
carry through a simple intuitive approach that con- 
nects the gaseous equation of state with the lifetime 
matrix of collision theory. Truly bound molecules and 
excited states can be ignored and attention focused on 
the collisional interactions. 

The lifetime matrix' provides a tool for analyzing 
each collision into a free-flight portion and a collision 
lifetime, which incorporates all the effects of the inter- 
action. The free-flight portion corresponds to continued 
motion of the particles as if the interaction had not 
occurred (in the case of an inelastic collision, an in- 
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stantaneous switch from an incoming to an outgoing 
free-flight path is assumed). The collision lifetime is 
always uniquely defined-it may even be negative, if 
the colliding particles separate sooner than they would 
have in free flight without interaction. The collision 
lifetime is well defined in the classical limit as well as 
quantally, but I use the quantal form with its relation 
to the scattering matrix since quantal effects are often 
important in molecular collisions. The collision life- 
time is well defined for interactions of short range; it 
diverges for the Coulomb interaction, but may be 
defined for a shorter range interaction superimposed on 
the Coulomb, leaving the contribution of the Coulomb 
part to be dealt with otherwise. The gas is assumed 
dilute enough so that ordinary Boltzmann statistics 
can be used. 

The basic idea of this article is to assume that a pair 
of molecules involved in any collision act l i e  a single 
bound molecule for the duration of the collision life- 
time and are completely free the rest of the time.The 
effective concentrations cj  of these collision complexes 
can be computed if their lifetimes are known, and they 
can be inserted in the sum on the right-hand side of 
Eq. (1) along with the stable species, 

n = x n ; +  Ccj. (2) 
i i 

In doing this it must be remembered that the concen- 
trations of the free stable species are reduced to the 
extent that they are transiently tied up in the com- 
plexes. Since the collision complex may have a negative 
lifetime, its concentration may be negative-but in 
this case the concentrations of its parents are effectively 
increased; this is, in fact, the result to be expected 
classically because of the excluded volume when the 
interaction is repulsive. 

For example, if the collision occurs between molecules 
A and B, with initial concentrations nAo and n g o ,  the 
reaction is 

A+B*(AB)complex, (3) 
and the concentrations are 

CAB, %A=nAo-cAB,  n B = n B O - c A B .  (4) 
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As a result the right-hand side of Eq. (1) becomes 

%A+%B+cAB= nAo+nBo-6AB, (5) 
which will be larger than no= %Ao+nBo if CAB is negative. 
Clearly there is no chance for n itself to become 
negative. 

We now wish to relate the concentrations cj  to the ni 
and the lifetimes. What is needed is an equilibrium co- 
efficient connecting cj and the ni: 

Cj=C*=G&( T)n$Zk. (6) 

The equilibrium coefficient Gik( T) may of course be 
negative, and will be so in general if the interaction is 
predominantly repulsive. G&( T )  is just the equilibrium 
concentration of complexes in the presence of unit 
concentrations ni, nk of the parent species. 

The connection with the collision lifetimes comes 
about because the concentration of an unstable com- 
plex is just the product oi its rate of formation and its 
lifetime. The relationship has already been used in 
connection with a discussion of reaction rates and 
collision rates.2 The collision lifetime for any colliding 
pair Ai, Ak degends not only on their internal states 
(which must be assumed to be completely specified 
by i, k )  but also on the angular momentum quantum 
numbers 1, mi and the energy E of relative motion: 

Qik(E, I, mi). ( 7 )  
Assuming unit concentrations of the colliding partners, 
the rate of production of this complex with energy in 
the range (E, E+6E) and in the given angular mo- 
mentum state l ,  ml is2 

K(E, I, ml)6E= (h2/27rpkT)W exp(-E/kT)6E. (8) 

The concentration of the complex in the range 
(E, E+6E; 1, m i )  is the product of this with the 
life time : 

g d E ,  I, ml)6E=Q&(E, 1, m l j k ( E ,  1, md6E. (9) 

The total concentration of this complex is then 

X exp( -E/kT)dE. (10) 

I t  is easy to see that the infinite sum in I converges, 
because the interaction and the lifetime vanish at large 
values of I (or large impact parameters). 

The lifetime Q&( E, I, mi) that enters into Eq. (10) 
is actually one of the diagonal elements of the lifetime 
matrix of reference 1, and it can be derived from the 
scattering matrix for the system. In  the special case 
lF. T. Smith, J. Chem. Phys. 36, 248 (1962). 
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where Ai and Ak are spherically symmetric atoms, Q 
becomes simply the energy derivative of the phase 
shift and is independent of mi: 

Q(E, 1, ml) =2f i (d6 i /dE) .  (11) 
When this is inserted in Eq. (10) we encounter an ex- 
pression which was first derived (by a different argu- 
ment) by Kahn and Uhlenbeck3 for the second virial 
coefficient for an atomic gas. 

As the density of a gas is increased, higher-order 
complexes become important. These can be handled in 
just the same way as the two-body complexes, by intro- 
ducing the collision lifetime and the collision rate for 
n-body collisions. The lifetime matrix for these cases 
has just been discussed elsewhere: and the collision 
rate expressions are to be found in reference 2. By an 
argument similar to that followed in deriving Eq. (10) 
we can find its generalization to an n-body collision 
equilibrium : 

X exp(-E/KT)dE. (12) 

(The reason for writing G* will become apparent later.) 
Here y is a set of 3 n 4  quantum numbers for the gen- 
eralized orbital angular momentum of the n-body 
collision5 and p is the n-body reduced mass, 

From G(”)* we can now obtain an apparent concentra- 
tion for n-body complexes, 

ci,j ..., ~ ( ~ ) * = G i , j  ..., ~(~)*(V)nfi j . . .n l .  (14) 

However, caution must be adopted in using this expres- 
sion, because of a contribution of lower-order collision 
complexes to the lifetime that went into the defini- 
tion of Gij...l(n)*( TI. This is most easily seen in the 
three-body case, which is now examined. 

In  Reference 4, i t  is shown that the three-body life- 
time Q(3) includes contributions due to pure two-body 
interactions such as the lifetime of AB while C is far 
away. This can be taken care of by a subtraction pro- 
cedure described in that paper, but i t  is just as legiti- 
mate to postpone the subtraction until after all the 
averages have been taken. After that has been done, it 
is easy to see that cijk(3)* includes three spurious con- 
tributions represented by the products Cij(’)nk, cjk(2)nit 
and c*(%j. These can be eliminated by using the cor- 

aB. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938); B. 
Kahn, doctoral dissertation, Utrecht, 1938. See also J. 0. Hirsch- 
felder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and 
Liquids (John Wiley & Sons, Inc., New York, 1954), pp. 404 ff. 

4 F. T. Smith “Collision Lifetimes in Many-Body Processes,” 
Phys. Rev. (to be published). 

5 F. T. Smith, Phys. Rev. 120, 1058 (1960). 
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rected equilibrium expression and its contribution to the integral in Eq. (10) can be 
G.. (3)( T )  =Gijk(3)*( T )  -G..(2)-Gp(2)-G. (2). evaluated separately. It is 

y k  sa Jk (15) 
G,(T) = (h2 /2rpKT) f (2Z+1)  exp( -&/kT). ( 2 2 )  The true concentration of the three-body complex is 

then Thus, the metastable states with long lives behave 
just as bound ones, a result that is intuitively obvious C;jk(') = G;jkca) (T) n$Zl-?&. (16) 

Similar subtractions are needed for the higher-order 
equilibria : 
G .. (4) = G _. (4)*-G.. (3)-GiS,(3) -G (a)-G..(2) 

y k  I y k  1 v k  11 I *a 

-G. (2)-Gki(2)-Gii(2)-G. a 8 .  f3-Git:2:. (17) 
tk  

Using these equilibrium coefficients it is now possible 
to set down the equilibrium equations for all the colli- 
sion complexes c$), ~ ; j k ( ~ ) ,  c ia~l (4) ,  etc., as well as for all 
the stable species n;. These must be combined with 
the chemical conservation conditions, for instance 

ni+2cii(2)+Ccij(2)+. . . ( 18) 
j#i 

Finally, these are to be supplemented by the perfect 
gas law in the form 

$//KT = N =  xni+Ccij(2)+ ~ i j k ( 3 ) +  * * * . ( 1 9 )  
i a)j a)a)k 

Equation ( 1 9 )  is a complete cluster expansion for 
the equation of state of real gases. It is entirely equiva- 
lent to the virial expansion, and reduces the problem 
to the evaluation of the collision lifetimes of the various 
clusters. These clusters are d e b e d  not by their spatial 
extent but by their lifetimes. Since the lifetime has a 
classical meaning, the expansion is also valid in the 
classical limit; the classical lifetimes may in fact give a 
useful approximation to the quantal ones. In the 
quantal case the effect of the statistics of the particles 
(Bose-Einstein or Ferm-Dirac) has not been explicitly 
included in the above argument, but it can readily be 
introduced in evaluating the equilibria? 

I t  is gratifying to find that this approach reduces to 
the Kahn-IihlenDecE f o m  in the case of binary atomic 
encounters. Their result was derived by considering 
the quantal density of statesa 

but reassuring. Except near the top of the barrier, 
where leakage broadens the levels unduly, it  is often 
possible to consider these resonances separately in the 
statistics, leaving the rest of the integral in Eq. ( 1 0 )  
to he evz!x&xl by using the smooth, elastic, contribu- 
tion to Q(E). This elastic portion may sometimes be 
usefully evaluated classically. The importance of de- 
viations from the classical behavior in the region near 
the top of the barrier remains to be evaluated. 

B. THERMODYNAMIC FUNCTIONS 

The procedure of the last section can readily be ex- 
tended to give other thermodynamic properties of the 
gas. Of these the most xcessible is the internal energy 
U per unit volume. 

The internal energy of the gas can be considered to 
be divided into a perfect gas portion 

a portion deriving from the internal energy of the 
stable molecules 

and a portion due to the interactions of the various 
collision complexes. To obtain the average energy of a 
typical complex A ;j we must start with the differential 
concentration 

It is then convenient to write 

where 
1 d 6 l  lik 
r d k  2 r p  

pi=-  -=-Q(E, 1). 
GYij=Cr' exp(-E/kT)Qij(E, I ,  ml)6E, ( 2 7 )  

(20)  and 

This formula may also be used now to give the density 
of states where inelastic collisions are possible. 

It is of interest to examine one of the quantal effects 
that enter into the evaluation of the equilibria G("). 
This is the existence of metastable levels inside a po- 
tential barrier. If the barrier is sufficiently thick and 
the levels are well separated, their effects will es- 
sentially not overlap and they can be treated as isolated 
Breit-Wigner resonances with a narrow half-width r, 
and a center a t  E,. The shape of Q near E,,, is deter- 
mined by this resonance,' 

e 2 l i r , [ ( & - ~ ) ~ + r ~ ~ l - ~ ,  (21) 

m 

eXP(-E/kT)Qij(E, I ,  m1)dE. 

( 2 8 )  
Then the average energy of the complex is 

( 2 9 )  E..= Y..-l my.. v v 1 a39 

U(')= CEijcij. (30) 

and the total internal energy due to binary complexing 
is 

i j  
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Similar expressions apply to the higher order com- 
plexes. The total internal energy is then 

U=UCO)+UC')+~W+. . . (31) 
(Note that the same result would be obtained had we 
writ ten 

and u@)*= ( E~,+E~+ E ~ )  cij, 

i j  

etc., and summed over these.) 
To get the other thermodynamic functions we ob- 

serve that Yij( T )  is just the internal partition function 
for the collision complex, and that the average internal 
energy per complex can be expressed as 

I n  integrating the equation 

(33) 

(34) 

to get the entropy, it is convenient to write 

Si?= T-'Eij+k In I Yij I +So, 

in order to take care of the cases where the collision 
partition function Y;j may be negative. 

It will be observed that Yij is in fact constructed 
just like other partition functions if we construe 

6wij= h-'Qij( E, I, ml) 6E (35) 
as the statistical weight associated with the complex 
at  the energy E. Bound states then are a special case 
in which Q(E)  becomes a 6 function Cr-4 in Eq. (21)] 
and o=l.  This indeed allows us to treat in a unified 
way all the possible situations including transient 
colliding pairs, long-lived metastables inside a potential 
barrier, excited states below the dissociation limit (with 
a finite radiative lifetime), and the ground state of the 
molecule. 

I t  can now be seen that the equilibrium coefficient 
Gij(T) can be expressed as a ratio of partition func- 
tions. The partition €unction for the free species Ai  is 
the familiar expression 

Zi= (2nm;kT/h2) bi exp( -Ei /kT) ,  (36) 
where wi is the weight factor in case of degeneracy. The 
complete partition function for the complex Aij is the 
product 

Zij= (2nMijkT/h2) bij-'wiwj exp[- (Ei+Ej)/kT]Yij, 

(37) 
where M;j=mi+mj and uij is the symmetry number 
(u;i=2, u + j = l ) .  If Aij is a stable state the same ex- 
pression holds since Y;j reduces to exp( - Eij/kT) 

T H E R M O D Y N A M I C S  O F  G A S E S  

(Eij is measured relative to Ai and Aj at infinite sepa- 
ration, and is negative for a bound state). The equilib- 
rium relation can now be expressed simply as 

cij/ninj=Gij( T )  = Zij/ZiZj. (38) 

The generalization to higher order collisions is obvious. 
We can now include all the states of an atomic or 

molecular species in a single partition function. For 
molecules this will include the unstable complexes 
along with the bound states. (The proper continuum 
spectrum of the molecule is now to be defined as the 
difference between the gross continuum and the con- 
tinuum due to atoms in free flight.) I n  the case of the 
atomic species A, comprising all the states Ai ,  we can 
define the various angular momentum and spin states 
by a set of quantum numbers y", so that any degener- 
acies are taken care of by a summation over ya. The 
effect of the radiative lifetime of the levels will appear 
in the lifetime function QA( E ,  y a ) ,  which takes the 
form of Eq. (21) near an isolated level and becomes a 
6 function for nonradiating states (collisional broaden- 
ing can also be taken into account, of course). The 
internal partition function of the atom is then 

Z A ~ ~ ~ =  exp(-E/kT)lz-'QA(E, y")dE 
7a 

m cuia exp ( - Ei/k T )  . 
i 

(39) 

The approximate equality a t  the end holds only if 
ionized states can be neglected. 

In the case of molecules a similar expression applies, 
and the integration includes bound state energies as 
well as the continuum. For diatomic molecules AB the 
set of quantum numbers y includes ya, yb, and 1, ml for 
their relative motion. The energy E must now be taken 
from some common origin such as the ground states of 
A and B. The result is 

Z A B ~ ~ ~ =  c/ exp( -E/kT)h-'QAB(E, yab)dE. (40) 

I t  will be remembered that the components Q(  E, y) 
appearing in Eqs. (39) and (40) are actually the 
diagonal elements of the matrix Q. These are summed 
over all the indices y, thus forming the trace of the 
matrix. Thus we can express the internal partition 
functions in the compact form: 

7a* 

Z A ~ ~ ~ = /  exp(-E/kT)h- '  TrQA(E)dE, (41) 

Z A B ~ ~ ~  = exp ( - E/K T )  h-' TrQAB ( E )  dE. (42) 

In  the case of triatomic and larger molecules like ABC 
that may split into three or more fragments, the neces- 
sary subtractions discussed in Sec. A are already taken 
care of in the definition of the complete lifetime matrix 

J 
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Q A w  of reference 4. Q A m  includes all the bound states 
of ABC, and all the collisions involving the complex 
ABC, both the binary processes such as AB+C and 
the ternary ones A+B+C. Consequently the complete 
internal partition function for a triatomic or poly- 
atomic species has just the same form as for the smaller 
species, for example 

Z A x b t = /  exp(-E/kT)h-' TrQABc(E)dE. (43) 

Using these partition functions the rn~centrztioiii 
G I  all the molecular species and clusters can be expressed 
in a concise form. The thermodynamic functions of the 
mixture follow immediately. 

C. AN EXAMPLE: CLASSICAL HARD SPHERES 

In  its quantal form this version of the gaseous equa- 
tion of state reduces correctly to the Kahn-Uhlenbeck 
formula. The theory can also be applied classically, 
and the hard-sphere gas provides an example of the 
treatment. Consider a gas of atoms of diameter u. The 
collisions can be classified by their relative energy E 
and by the magnitude L of the angular momentum. 
Collision only occurs if 

L I  L ( E ) ,  (44) 

L Z =  2 p w .  (45) 
where 

The collision lifetime is negative in this range and zero 
elsewhere; its magnitude is just the time the inter- 
action-free trajectory would have taken to pass through 
the sphere YIU, 

Q ( E ,  L )  = - (2p/E) *U ( 1  - L2/Lm2) * ( L <  Lm) 
(46) 

= O  ( L 2 L m ) .  

In  converting the quantal expression Eq. (28) for 
the collision partition function to classical f ~ r 1 ~ 1 ,  we 
can take advantage of spherical symmetry (inde- 
pendence of ml) and make the substitution 

fi2Cf(l> = fi2C (2Z+l)f(l)+/. .(L) d ( L 2 ) .  (47) 
[,mi 1 

Then we find 
2 

YII=:[ exp( - E/kT)  /Lm Q( E,  L )  d (Lz) dE 
0 

In writing the expression for the equilibrium coefficient 
GI1 we must remember that the two collision partners 
are identical, so that a symmetry factor of is needed 
to avoid counting the collisions twice: 

Gu( T )  =8 (h2/2rpkT) #Y,i( T )  = - $(T$). (49) 

If we confine our attention to binary collisions, we have 
the conditions 

cii= fii2Gii, 

nl= n10-2cll, (50) 
and consequently 

tZ= ?Zi+CU=tZio-C1l= el0+ ( 2 x 4 3 )  ( t Z i o ) 2 + .  * *.  (51) 
This reproduces the well-known second virial coefficient 
for the hard-sphere gas. 

Similarly we can compute the average energy of the 
collision dimers, 

Eli= Y11-l EdYii=$kT. ( 5 2 )  I 
The internal energy density is then 

U = $k Tn+cUEl1 = $k T ( n+cll) = $kTn,,. ( 5 3 )  
This is again the correct result, showing that the in- 
stantaneous hard-sphere collisions do not affect the 
energy density or the specific heat. 

D. TRANSFORMATION TO THE CLASSICAL 
CLUSTER FORMULATION 

The partition function we have derived here, Eqs. 
(41) to (43), has a very different appearance from the 
classical expression in terms of the configuration inte- 
gral. Nevertheless, it  is not hard to derive the usual 
expression from the integral over the collision lifetimes. 
It will suffice to show the transformation explicitly for 
a gas of atoms interacting through the spherically 
symmetric potential V ( r ) .  

Classically the collision lifetime can be expressed in 
terms of the relative kinetic energy E and angular mo- 
mentum L by the equation 

Here the first integral represents the time taken to get 
from R to the point of closest approach, R,;,, and the 
second is the corresponding time for an interaction-free 
collision. The square roots represent the radial veloci- 
ties; Rmin and Rmi2 are defined by the condition that 
the radial velocity vanishes there, 

2/lRmin2[ E - V (Rmin) ] L2, 

2pRminf2E= L2. ( 5 5 )  
Using Eq. (47), the internal part of the collision 

partition function becomes classically, in this case: 

L2)d(L2) exp( -E/kT)dE.  

(56) 
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The integral over d (  L2) corresponds to taking the trace 
of Q in the quantal formulation. Q itself, by Eq. (54), 
involves integrals over the radial coordinate r, in which 
the lower limit of integration depends on L2 and E. 
Nonetheless, the order of integration can be changed if 
the limits are changed appropriately; the condition to 
be observed is that the square roots must remain real. 
Integrating first over L2, from 0 to a maximum de- 
pending on E and r, we find 

R L'ma,2 
- L2}-&d( L2)rdr- i, ( 2pr2E - L2) -Id ( L2) rdr 

-/."E%%), (57) 

carefully taken over the full path from the first passage 
into the sphere at  r= R to the last passage out. Instead 
of Eq. (47) , we need now the equivalences 

hAm*GL,= 6(L  cos0) = L sinO66, 

fiAl-GL. (60) 

L defines only the plane in which the motion occurs, 
and we must still average over the various orientations 
in that plane represented by the angle 4. As before we 
integrate explicitly over LdL and dE, and we are left 
with the configuration integral over the volume element 
dr = r2dr sinOdOd4. 

Next, consider the three-body collision lifetime Q(3). 
In  this, as in higher order collisions, r must be replaced 
by the generalized distance p which can be defined in 
terms of the trace of the inertia tensor for the in- 
stantaneous configuration of the three-body system 
with respect to the center of mass: 

2pp2= TrI.  (61) 

where we have used the conditions All the other relative coordinates can be written as 
angles. Now Q(3) may classically be written in a form 
just like Eq. (54), but using the coordinate p and its 
related velocity vp. The integrals in Q are of the type 

2pr2[E-V(r)]= LmaX2, 2pr2E= Lmad2, (''I 
and 

V(Ro)=E. SRvp-'dp with 

Now we can integrate over dE  in Eq. (56) , setting the ;pvp2= E - V (9) - A2/2pp2, (62) 
lower limit in the first integral in E to keep [E- V ( r ) ] *  
real : where A2 represents the generalized angular momentum 

in the six-dimensional space of the relative motion.6 To 
CE-VVr)Itexp(-E/KT)dE form the trace of Q we must sum over five angular 

momenta y, which may be taken in the regular repre- 
Zint, gT2h-3 ( 2p)  4 

sentation defined in reference 5 .  In  this representation 
we define the angular momenta in successive subspaces 

"p(- E/kT)dE r2dr of the six-space, getting the equivalences 

= 4 ~ f ~ ~ [ ~ [ e x p (  - V ( r ) / K T )  -l]r2dr. (55j 

If the colliding atoms are identical, the symmetry factor 
4 must be included. The final form is the familiar one 
involving the two-atom configuration integral. 

A similar development can clearly be used to obtain 
the configuration integral from the lifetime expression 
in more general cases such as many-body collisions or 
collisions of molecules without spherical symmetry. In  
these cases the lifetime Q will depend on additional 
variables besides E and L2, but it can always be written 
in an integral form analogous to Eq. (54). The quantal 
sum forming Tr  Q becomes a classical multiple integral 
over several variables. I now briefly sketch the gen- 
eralization of the derivation of Eq. (59) to cover more 
general cases. 

First, consider an encounter of two molecules with- 
out spherical symmetry and with a potential depending 
only on r ,  e,+. Q may still be written in the form of Eq. 
(54), with V ( r ,  0, 4) , but the integration in dr must be 

fiX-tA, 

hX4-+A4= A cosB4, 

hXa+A3= A4 COS&, 

hX2-+A2= A3 cos&, 

fiXi+Ai= A2 COSOi. (63) 

The sum over y becomes an integral over the angular 
momenta 

dAd&dAadA&Al= AtdA cos3O4 sinhd04 cos203 sin03d03 

X cos02 sinOzd& sinOldO1. (64) 

To this must be added an integration over the angle 4 
in the remaining 2-space defined by the A's. The inte- 
grations over dA and dE can now be carried out, 
leaving a configuration integral in p and 5 angles, 
representing the 6 coordinates of relative motion of the 
three particles. 

In  this way, a hierarchy of configuration integrals 
can be obtained. They are a classical form of the ex- 
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pressions G(”)* of Eq. (12). The first two of them are 

G(*)= f exp[ - I/‘( r) /KT] - 1 ) dar, I 
G(3)*= (exp[-V(p)/kT]-1)d6p. (65) 

To get the equilibrium coefficients we must perform 
the subtractions of Eqs. (15) and (17) ; for the case of 
identical particles we must also introduce the symmetry 
factor, so that the final equilibrium coefficient becomes 
b,,=G‘”’/n!. The quantity b, is in fact identical with 
the cluster integral designated b, in Mayer’s classical 
theoryb-this can easily be shown by approximating 
the potential by a sum of pair potentials and developing 
the integrand as a polynomial in fi, as in Mayer’s 
treatment. Thus the clusters defined by the n-body 
lifetimes turn out to be a physical realization of Mayer’s 
clusters. 

The clusters used in this treatment differ from the 
“physical clusters” considered by Hi11,7 which are 
defined by setting some boundary in phase space, and 
which are more easily defined when the intermolecular 
forces are strong. Hill’s treatment requires the residual 
consideration of collisions between clusters, which 
therefore cannot be treated as a perfect gas. 

1 

E. CONCLUSIONS 

Starting from the simple assumption that gas im- 
perfections can be attributed to the formation of 
transient complexes that can be treated just like stable 
molecules, we have arrived a t  results of unexpected 
generality. The lifetime matrix Q for each atomic or 
molecular species can be extended to include the bound 

J. E. Mayer and M. G. Mayer, Statistical Mechanics (John 
Wiley & Sons, Inc., New York, 1940). 

T. L. Hill, J. Chem. Phys. 23,617 (1955) ; T. L. Hill, Statistical 
Mechanics (McGraw-Hill Book Company, Inc., New York, 
1956). pp. 152 ff; N. Davidsm, St~slk-cil Maiucnics, (McGraw- 
Hill Book Company, Inc., New York, 1%2), pp. 337 ff. 

states as well as the collisional continuum for which it 
was originally introduced. A new, more general form 
for the molecular internal partition function has been 
discovered, 

Zht = 1 exp ( - E/KT) h-l TrQ ( E )  dE, (66) 

which reduces, for bound states, to the familiar form. 
For an atomic gas, it reduces to the Kahn-Uhlenbeck 
expression for the quantal second virial coefficient; 
in the classical limit it can be transfcmed :O the iisual 
configuration integral. All possible molecular combina- 
tions, including nonbonding systems that may even 
have negative partition functions and concentrations, 
must be considered as present in the gas. Using the 
partition functions, the concentrations and the thermo- 
dynamic functions can be immediately expressed. The 
result is equivalent to an exact quantal cluster expan- 
sion, and the transition to the classical limit follows 
simply and directly by introducing the classical colli- 
sion lifetimes. 

The principal formal deficiency of the theory in its 
present form is that it does not cope with the long- 
range Coulomb interaction. 

The effectiveness of the lifetime matrix in dealing 
with the thermodynamic properties of gases leads to 
the hope that i t  may also be useful in connection with 
transport properties. It is well known that the usual 
derivation of the Boltzmann equation neglects the 
duration of the collisions. 

I t  now becomes important to seek practical methods 
for calculating the lifetime matrix or its trace. Percival’s 
work* in this direction is welcome. 
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